
Journal of Computational Physics175,739–763 (2002)

doi:10.1006/jcph.2001.6965, available online at http://www.idealibrary.com on

An Explicit Fourth-Order Orthogonal
Curvilinear Staggered-Grid FDTD
Method for Maxwell’s Equations

Zhongqiang Xie,∗ Chi-Hou Chan,† and Bo Zhang∗,†
∗School of Mathematical and Information Sciences, Coventry University, Coventry CV1 5FB,

United Kingdom; and†Department of Electronic Engineering, City University
of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

E-mail: xie@coventry.ac.uk, eechic@cityu.edu.hk, and b.zhang@conventry.ac.uk

Received May 19, 2000; revised October 18, 2001

The explicit fourth-order staggered finite-difference time-domain scheme, pre-
viously proposed for a Cartesian grid, is extended to Maxwell’s equations in an
orthogonal curvilinear coordinate system and applied to electromagnetic wave prob-
lems. A simple technique is also presented for generating orthogonal curvilinear
grids that conform to the material boundaries and interfaces of the problem. Nu-
merical experiments are presented to illustrate the efficiency and accuracy of the
method. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The finite-difference time-domain (FDTD) method, which was first introduced by
Yee [55] in 1966 and later developed by Taflove and others [43–46] and which employs a
fully staggered space–time grid, is a very efficient numerical algorithm in computational
electromagnetics and is applicable to a broad range of problems. However, the traditional
FDTD scheme is based on a Cartesian coordinate system, and it is difficult to exactly gen-
erate grids for electromagnetic structures with curved boundaries and interfaces. The usual
and straightforward approach is to simply approximate the boundaries and interfaces using
a staircased curve, and an accurate solution can only be obtained using very fine grids
and, consequently, a very small time step. While this may seem adequate for many prob-
lems it nevertheless affects the overall accuracy and essentially reduces the (second-order)
Yee scheme to first order (see, e.g., [10, 29, 43, 44]). In the case of perfectly conducting
boundaries this problem has been considered by many authors (see, e.g., [10, 29]), and a
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number of approaches have also been put forward to tackle the problem: nonorthogonal
curvilinear FDTD methods [22, 28, 35], contour path methods [27, 31], locally conformal
FDTD methods [21, 26, 56], and finite-element or finite-volume methods on unstructured
grids [6, 37, 38, 57]. A variety of other techniques can be found in [43, 44]. Most, if not all,
of these methods, however, sacrifice the simplicity of the original Yee scheme to achieve
the improved accuracy, and moreover they are difficult to extend to high-order schemes.

In the case of dielectric interfaces where the tangential components of the electric field
is nonzero, additional difficulties arise when imposing the interface conditions on curved
interfaces with nonorthogonal curvilinear or unstructured grids, and few results are available.
For the scalar wave equation with a general curvilinear interface a second-order immersed
interface method was proposed in [36], in which a simple Cartesian grid is maintained and
the finite-difference stencils around the immersed interfaces are modified to account for
the correct position of the interface and the proper physical jump-conditions. The contour
path method was extended in [27] to deal with electromagnetic scattering by random rough
interfaces. In [18], a block pseudospectral method was proposed for Maxwell’s equations
with discontinuous coefficients, and proper physical jump-conditions at interfaces were
also used to couple blocks via fictitious points or a generalization of characteristic outflow
conditions in the case of a straight-line interface. Extension by a change of variable was
also mentioned in [18] in the case of curvilinear interfaces.

On the other hand, the (second-order) Yee scheme has been widely used with a great
deal of success. It is, however, efficient only for geometries of moderate electrical size. For
wave propagation over longer distances, the grid resolution requirements of the Yee scheme
can become excessive, leading to impractical CPU and memory requirements. One is thus
naturally led to the development of higher-order schemes which produce smaller dispersion
or phase errors for a given grid resolution [20, 41, 43, 44, 50, 53, 58–60]. Note that higher-
order finite-difference schemes have also been developed for the elastic wave equation [8]
as well as for acoustic applications (see, e.g., [16, 23] and the reference quoted there).

An important issue associated with high-order interior differencing schemes is the use
of numerical boundary schemes which must be suitably accurate relative to the interior
scheme [24, 25] and must be stable. This is because high-order difference schemes often
have a large spatial stencil which cannot be used near boundaries and material discontinu-
ities. Appropriate numerical boundary schemes can be difficult to obtain, and this represents
a significant obstacle to the use of higher-order methods. Recent progress is reported by
Carpenteret al. [12, 13], Turkel and Yefet [50], and Abarbanelet al. [1] in the case of
perfectly conducting boundaries. However, in the case of dielectric interfaces only a few
results are available. For a plane interface which coincides with the electric grid points,
appropriate fourth-order accurate boundary schemes were derived near dielectric interfaces
in [58] for an explicit fourth-order in space and second-order in time, staggered, FDTD
scheme by using fourth-order accurate one-sided extrapolation and one-sided difference
approximations. Similar treatment can be found in [59] for compact implicit fourth-order
in both space and time schemes. In [53], in the case when the electric grid points coincide
with the interface, third-order boundary schemes were given near flat dielectric interfaces
for an explicit fourth-order in both space and time, staggered, FDTD scheme by making
use of third-order one-sided difference approximations combined with the immersed in-
terface technique. The third-order boundary treatment in [53] is numerically stable and
does not affect the overall fourth-order accuracy of the scheme, as confirmed by numerical
experiments.
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Compared with previously developed fourth-order schemes, the FDTD scheme proposed
in [53] is explicit, fourth-order accurate in both space and time, and employs the fully stag-
gered, space and time grid, which is more efficient than nonstaggered grids [54]. Numerical
experiments indicate that the scheme as well as its associated third-order boundary treat-
ments is numerically stable and highly efficient (with respect to Yee’s scheme). Another
advantage is that the scheme retains much of the original simplicity of Yee’s scheme and
is easy to implement in conjunction with the reflectionless absorbing layers developed in,
for example, [2, 9, 41] in simulating scattering of waves from computational domains. The
disadvantage is that the scheme is based on a rectangular grid similar to the Yee scheme
and hence is ineffeicient for complex structures.

In this paper we extend the fourth-order scheme in [53] to an orthogonal curvilinear
grid which conforms to metallic boundaries and dielectric interfaces so it can be applied to
complex electromagnetic structures. This is done in Section 2, where the associated third-
order boundary schemes have also been described for two classes of boundary conditions:
the dielectric interface and the perfect conductor. The third-order boundary schemes are
derived using one-sided difference approximations combined with the immersed interface
technique [36] and do not affect the overall fourth-order convergence rate of the fourth-
order scheme, as confirmed by the numerical experiments in Section 3, which is consistent
with the theorectical results of Gustafsson [24, 25]. The fourth-order scheme has also been
extended to the reflectionless absorbing layer simulating radiation out of a computational
domain. The advantage of using orthogonal curvilinear grids is that the simple structure of
Maxwell’s equations is remained in the transformed equations and the boundary and inter-
face conditions are greatly simplified under orthogonal curvilinear grids (see Section 2) so
that they are much easier to deal with numerically. Moreover, nonorthogonal grids may lead
to numerical difficulties when cells are badly deformed [32]. Our orthogonal grid method
can be applied to problems involving smooth duct-shaped domains, such as scattering by
rough surfaces, including periodic surfaces (diffraction gratings), and wave propagation
and scattering in multilayered media with smooth curved boundaries and interfaces.

On the other hand, orthogonal grids have limitations in applications due to the difficulty
of generating orthogonal grids for problems involving sharp/nonsmooth features and/or
boundaries and interfaces with significant variations. So orthogonal grid methods are not
directly applicable in these cases but can be useful in combination with multidomain tech-
niques, which will be investigated in the future.

It should be remarked that orthogonal grid generation has been studied by many authors
in the two-dimensional case (see, e.g., [3, 5, 19, 32, 47, 49] and the references quoted there),
including the case of doubly connected regions [52], and in the three-dimensional case [32,
48, 49]. Recently, orthogonal grids have also been used for numerically solving problems
in duct acoustics in [4] and for electromagnetic wave propagation problems in multilayered
regions with curved boundaries and interfaces in [34, 39].

A numerical example, which models a cylindrical PEC resonator consisting of two con-
centric PEC cylinders with an electromagnetic wave bouncing back and forth between the
walls, is presented in Section 3.1 to illustrate the efficiency of the new scheme. The results
indicate that the staircase approximation may not be appropriate in the computation of
microwave resonators due to the fact that in this case an electromagnetic wave is bouncing
back and forth between the walls, so numerical errors are building up very quickly in the
solution. Instead, conformal orthogonal curvilinear grid schemes are appropriate alterna-
tives. In Section 3.2 the new scheme is applied to scattering from periodic surfaces, and
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numerical results indicate that the fourth-order scheme is numerically stable as well as
accurate and efficient in modeling electromagnetic scattering from periodic surfaces. The
orthogonal curvilinear grid that conforms to the material boundaries and interfaces in the
scattering problem and is used in Section 3.2 was generated by a simple technique proposed
in Appendix B.

2. MAXWELL’S EQUATIONS AND THE DISCRETIZATION

We restrict our descriptions to two-dimensional cases although extension to 3D is straight-
forward. Considering in this paper the transverse electric (TE) polarization case in an in-
homogeneous, isotropic medium, the model equations in a Cartesian coordinate system
are

∂H x

∂t
= − 1

µ

(
∂Ez

∂y
+ σ M H x

)
, (2.1)

∂H y

∂t
= 1

µ

(
∂Ez

∂x
− σ M H y

)
, (2.2)

∂Ez

∂t
= 1

ε

(
∂H y

∂x
− ∂H x

∂y
− σ E Ez

)
, (2.3)

whereε andµ are the permittivity and permeability, andσ M andσ E denote, respectively,
the magnetic and electric losses of the medium.

We introduce the following coordinate transformation which transforms the compu-
tational domain in the physical space (i.e.,(x, y)-plan) into a rectangular region in the
transformed space (i.e.,(ξ, η)-plan):

x = x(ξ, η), y = y(ξ, η). (2.4)

Then Maxwell’s equations (2.1)–(2.3) are transformed into

∂H ξ

∂t
= − 1

Jµ

∂Ez

∂η
− σ

M

µ
H ξ , (2.5)

∂H η

∂t
= 1

Jµ

∂Ez

∂ξ
− σ

M

µ
Hη, (2.6)

∂Ez

∂t
= 1

Jε

[
α
∂Hη

∂ξ
− β ∂H ξ

∂η
− γ

(
∂Hη

∂η
− ∂H ξ

∂ξ

)]
+ 1

Jε

(
P Hξ + QHη

)− σ E

ε
Ez,

(2.7)

where J = xξ yη − xηyξ is the Jacobian,H ξ = H xξx + H yξy and Hη = H xηx + H yηy

are the contravariant magnetic components,α = x2
η + y2

η andβ = x2
ξ + y2

ξ are the metrics,
γ = xξ xη + yξ yη, and

P = yξξ yη − yξηyξ + xξξ xη − xξηxξ , (2.8)

Q = yηξ yη − yηηyξ + xηξ xη − xηηxξ . (2.9)
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Here the subscriptsξ andη refer to the derivatives with respect toξ andη, and by using the
relationship

xξ = Jηy, xη = −Jξy, yξ = −Jηx, yη = Jξx,

it follows that H x = H ξ xξ + Hηxη andH y = H ξ yξ + Hηyη.
We assume that the above coordinate transformation is orthogonal (i.e.,γ = 0 andJ 6= 0),

so thatα > 0, β > 0, andJ does not change sign. Then (2.7) becomes

∂Ez

∂t
= 1

Jε

[
α
∂Hη

∂ξ
− β ∂H ξ

∂η

]
+ 1

Jε
(P Hξ + QHη)− σ

E

ε
Ez. (2.10)

Thus, in the orthogonal curvilinear coordinate system(ξ, η) the transformed equations (2.5),
(2.6), and (2.10) are of a structure similar to the original Maxwell’s equations so that the
fully staggered space-time grid, which is more efficient than the nonstaggered one [54], is
applicable.

Orthogonality is a desirable property, since the metric tensor [32] of the transformation
then has zero off-diagonal elements, which simplifies both the transformed equations and
the application of boundary conditions, as seen above and below. A nonorthogonal trans-
formation could be used, but finding a suitable discretization would be more complicated.
Moreover, nonorthogonal grids may lead to numerical difficulties when cells are badly de-
formed [32]. Note that orthogonal curvilinear grids have been studied by many authors (see,
e.g., [3, 5, 19, 32, 47–48, 49, 52] and the references quoted there) and employed to solve
duct acoustic problems in [4] as well as problems of electromagnetic wave propagation in
multilayed media with curved boundaries and interfaces in [34, 39].

2.1. Discretization

In [53], an explicit fourth-order accurate staggered FDTD scheme was proposed for
Maxwell’s equations in a Cartesian coordinate system, which is fourth-order accurate in
both space and time, conditionally stable, and highly efficient (with respect to Yee’s second-
order accurate scheme) and still retains much of the original simplicity of Yee’s scheme.
The idea of deriving the fourth-order scheme in [53] was first to apply the Taylor expansion
method to the temporal derivative so that a third-order correctional temporal derivative could
be introduced in the discretization and then to reduce the third-order temporal derivative
to the second-order by employing the Maxwell equations. The idea can be extended to the
Maxwell equations (2.5), (2.6), and (2.10) in the orthogonal system(ξ, η). For example,
consider the equation (2.5). From the Taylor expansion it follows that

∂H ξ

∂t

∣∣∣∣n = H ξ |n+1/2− H ξ |n−1/2

δt
− (δt)

2

24

∂3H ξ

∂t3

∣∣∣∣n + O((δt)4), (2.11)

whereδt is the time-step size andun denotes the value ofu at t = nδt . Using Eq. (2.5)
gives

∂3H ξ

∂t3

∣∣∣∣n = − ∂2

∂t2

(
1

Jµ

∂Ez

∂η
− σ

M

µ
H ξ

) ∣∣∣∣n, (2.12)

∂2H ξ

∂t2

∣∣∣∣n = − 1

Jµ

(
∂

∂t
− σ

M

µ

)(
∂Ez

∂η

) ∣∣∣∣n + (σ M

µ

)2

H ξ |n. (2.13)
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To make use of Yee’s fully staggered space–time grid in the fourth-order scheme we can
apply the fourth-order approximation toH ξ |n:

H ξ |n = H ξ |n+1/2+ H ξ |n−1/2

2
− (δt)

2

8

∂2H ξ

∂t2

∣∣∣∣n + O((δt)4). (2.14)

From (2.13) and (2.14)H ξ |n and(∂2H ξ /∂t2)|n can be obtained, which together with (2.12),
(2.11), and (2.5) implies that

(1+ σ̃M) H ξ |n+1/2 = (1− σ̃M) H ξ |n−1/2− δt

Jµ

[
1+ (δt)

2

24

∂2

∂t2
+ σ̄M

12

(
1+ σ̄

2
M

8

)−1

×
(
δt
∂

∂t
− σ̄M

)](
∂Ez

∂η

) ∣∣∣∣n, (2.15)

whereσ̄M = σ Mδt/µ and σ̃M = σ̄M(1+ σ̄ 2
M/8)

−1(1+ σ̄ 2
M/24)/2. Let us consider a uni-

form grid with grid sizes1ξ and1η on a rectangular region in the transformed space
and assume that the grid is indexed by(i, j ). To derive a fourth-order scheme we can ap-
ply the fourth-order centered difference approximation to the first-order spatial derivative
(∂Ez/∂η) and obtain that

(
1+ σ̃M |i, j+1/2

)
H ξ
∣∣n+1/2
i, j+1/2 =

(
1− σ̃M |i, j+1/2

)
H ξ
∣∣n−1/2
i, j+1/2−

δt

(Jµ)|i, j+1/2

×
[
1+ (δt)

2

24

∂2

∂t2
+ σ̄M |i, j+1/2

12

(
1+ 1

8
σ̄ 2

M

∣∣
i, j+1/2

)−1

×
(
δt
∂

∂t
− σ̄M |i, j+1/2

)][
3η

(
Ez
∣∣n
i, j+1/2

)]
, (2.16)

where3η denotes the fourth-order centered difference operator of the first-order spatial
derivative alongη, defined by

3η(ui, j ) = 1

1η

(
1

24
ui, j−3/2− 9

8
ui, j−1/2+ 9

8
ui, j+1/2− 1

24
ui, j+3/2

)
.

The discretization induces discrete values for all of the transformed variables in the Maxwell
equations. For example,

un
i, j = u(tn, ξi , η j ),

with (ξi , η j ) = (i1ξ, j1η) being the grid points in the transformed domain andtn = nδt
the time. The transformation (2.4) also carries the transformed-space grid to a physical-space
grid (xi, j , yi, j ), wherexi, j = x(ξi , η j ) andyi, j = y(ξi , η j ).
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For (2.6) and (2.10) a similar argument as above can be used to obtain that(
1+ σ̃M |i+1/2, j

)
Hη
∣∣n+1/2
i+1/2, j

= (1− σ̃M |i+1/2, j
)

Hη
∣∣n−1/2
i+1/2, j+

δt

(Jµ)|i+1/2, j

[
1+ (δt)

2

24

∂2

∂t2
+ σ̄M |i+1/2, j

12

×
(

1+ 1

8
σ̄ 2

M

∣∣∣∣
i+1/2, j

)−1(
δt
∂

∂t
− σ̄M |i+1/2, j

)][
3ξ

(
Ez
∣∣n
i+1/2, j

)]
,

(2.17)

(1+ σ̃E|i, j ) Ez
∣∣n+1
i, j = (1− σ̃E|i, j ) Ez

∣∣n
i, j +

δt

(Jε)|i, j

[
1+ (δt)

2

24

∂2

∂t2
+ σ̄E|i, j

12

×
(

1+ 1

8
σ̄ 2

E

∣∣
i, j

)−1(
δt
∂

∂t
− σ̄E|i, j

)]
× [αi, j3ξ

(
Hη
∣∣n+1/2
i, j

)− βi, j3η

(
H ξ
∣∣n+1/2
i, j

)
+ (Pi, j H ξ

∣∣n+1/2
i, j + Qi, j Hη

∣∣n+1/2
i, j

)]
, (2.18)

where σ̄E and σ̃E have expressions similar to ¯σM and σ̃M , with µ and the supscriptM
being replaced withε andE, respectively, and where3ξ denotes the fourth-order centered
difference operator of the first-order spatial derivative alongξ , defined by

3ξ(ui, j ) = 1

1ξ

(
1

24
ui−3/2, j − 9

8
ui−1/2, j + 9

8
ui+1/2, j − 1

24
ui+3/2, j

)
.

To obtain a fourth-order in both space and time scheme we employ the four-point second-
order backward difference approximation

∂2un

∂t2
≈ 1

(δt)2
(2un − 5un−1+ 4un−2− un−3)

and the four-point third-order backward difference approximation

∂un

∂t
≈ 1

3δt
(10un − 18un−1+ 9un−2− un−3)

for the second- and first-order temporal derivatives, respectively, which appear in (2.18),
(2.16), and (2.17). On the other hand, on a spatially staggered grid the values ofHξ and
Hη at integer grid points(i, j ) are not defined directly, and the following fourth-order
interpolations may be used:

H ξ
i, j =

1

16

(−H ξ
i, j−3/2+ 9H ξ

i, j−1/2+ 9H ξ
i, j+1/2− H ξ

i, j+3/2

)
,

H η
i, j =

1

16

(−H ξ
i−3/2, j + 9H ξ

i−1/2, j + 9H ξ
i+1/2, j − H ξ

i+3/2, j

)
.

Finally, the discrete values at the grid points(i, j ) of the coefficients in (2.18) (i.e.,αi, j ,
βi, j , Pi, j , andQi, j ) involve those of the derivatives ofx andy with respect toξ andη. As
is seen in Appendix B, the calculation of the second-order derivatives is reduced to that of
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the two simplest first-order grid derivativesxξ andyη, which may be approximated by the
five-point fourth-order centered difference schemes

xξ |i, j = 1

121ξ
(xi−2, j − 8xi−1, j + 8xi+1, j − xi+2, j ), (2.19)

yη|i, j = 1

121η
(yi, j−2− 8yi, j−1+ 8yi, j+1− yi, j+2). (2.20)

The above explicit fourth-order in both space and time leapfrog FDTD scheme needs the
history values of the field unknowns at four time levels. Compared with the Yee scheme
the fourth-order scheme requires additional computational memory but does not increase
the workload sharply. In fact, as illustrated in Appendix A and the numerical experiments
in Section 3.2 (see Table II below), to achieve the same level of numerical error the CPU
time and memory requirements of the Yee scheme are about 15 times and 9 times higher
than those of the fourth-order scheme, respectively.

Besides, the computational memory required by the fourth-order scheme is similar to
the classical fourth-order Runge–Kutta (RK) scheme. Further, Appendix A shows that both
the fourth-order and the RK schemes have similar numerical behavior. From Appendix A
it is found that the amplitude error for the RK scheme is smaller than that for the explicit
fourth-order ((4, 4)) scheme. However, the amplitude errors for both schemes are much
smaller than their respective phase errors and have little effect on the solution compared
with the phase errors, and the phase error for the RK scheme is only slightly smaller than
that for the (4, 4) scheme.

Furthermore, compared with the fourth-order RK scheme our explicit fourth-order scheme
requires fewer operations per time step and also avoids the difficulty of imposing appro-
priate intermediate-stage boundary conditions, which are required by the RK scheme to
maintain the order of accuracy (see, e.g., [11, 40] and the references quoted there).

2.2. Boundary Conditions

We consider three of the most important boundary conditions: the dielectric interface,
the perfect conductor, and a reflectionless absorbing layer to simulate radiation out of a
computational domain.

2.2.1. Reflectionless Absorbing Layers

To terminate the unbounded domain of scattering problems, we consider the use of a so-
called reflectionless absorbing layer technique that was introduced in [41]. In this absorbing
layer the absorbing terms are added, in this paper, to the transformed equations other than
the original equations so that this takes the form

∂H ξ

∂t
= − 1

Jµ

∂Ez

∂η
− σ

M
η

µ
H ξ − σ

M
ξ

µ2
Rη, (2.21)

∂H η

∂t
= 1

Jµ

∂Ez

∂ξ
− σ

M
ξ

µ
Hη + σ

M
η

µ2
Rξ , (2.22)

∂Ez

∂t
= 1

Jε

(
α
∂Hη

∂ξ
− β ∂H ξ

∂η

)
+ 1

Jε
(P Hξ + QHη)− σ

E
ξ + σ E

η

ε
Ez− σ

E
ξ σ

E
η

ε2
Rz,

(2.23)
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∂Rξ
∂t
= 1

J

∂Ez

∂ξ
, (2.24)

∂Rη
∂t
= 1

J

∂Ez

∂η
, (2.25)

∂Rz

∂t
= Ez. (2.26)

Hereσwξ = 0, σwη = σw in the layers in theη-direction,σwη = 0, σwξ = σw in the layers in
theξ -direction, andσwξ = σwη = σw in the four overlapping corner regions of the absorbing
layers, wherew denotesM and E. In the case when the reflectionless absorbing layer
is needed only in one direction, say, theη direction, chooseσwξ = 0 andσwη = σw with
w = M, E and writeR= Rξ , so the above equations can be simplified as follows:

∂H ξ

∂t
= − 1

Jµ

∂Ez

∂η
− σ

M

µ
H ξ , (2.27)

∂H η

∂t
= 1

Jµ

∂Ez

∂ξ
+ σ

M

µ2
R, (2.28)

∂Ez

∂t
= 1

Jε

(
α
∂Hη

∂ξ
− β ∂H ξ

∂η

)
+ 1

Jε
(P Hξ + QHη)− σ

E

ε
Ez, (2.29)

∂R

∂t
= 1

J

∂Ez

∂ξ
. (2.30)

Equations (2.27)–(2.30) are used in the scattering problem by periodic surfaces in Sec-
tion 3.2 below. The above two sets of equations can be discretized similarly to that shown
in Section 2.1.

2.2.2. Dielectric Interfaces and Perfect Conductors

We assume the materials involved are nonmagnetic and lossless so that in the TE polar-
ization case the boundary conditions between different dielectric materials become

Ez
1= Ez

2, nx H y
1 − ny H x

1 = nx H y
2 − ny H x

2 , nx H x
1 + ny H y

1 = nx H x
2 + ny H y

2 , (2.31)

where the subscripts refer to the field components in two neighboring media and(nx, ny)

denotes the unit vector normal to the interface.
Under the orthogonal transformation (2.4) an interface or a boundary in the physical

space corresponds to aξ -line whereη is constant andξ varies or anη-line whereξ is
constant andη varies, so the unit normal to the interface or boundary is±(J/√α) (ηx, ηy)

(whenη is constant) or±(J/√β) (ξx, ξy) (whenξ is constant) [32, pp. 74–76]. Without
loss of generality we assume that the interface in the physical space corresponds toη = 0.
Then the interface conditions (2.31) become

Ez
1 = Ez

2, ηx H y
1 − ηy H x

1 = ηx H y
2 − ηy H x

2 , ηx H x
1 + ηy H y

1 = ηx H x
2 + ηy H y

2 .

Due to the orthogonality of the transformation (2.4) these reduce to the simple conditions
in the transformed space:

Ez
1 = Ez

2, H ξ
1 = H ξ

2 , Hη
1 = Hη

2 at η = 0. (2.32)
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If the permittivity ε at the interface is evaluated as the average of those at both sides of the
interface, that is, ˜ε = (ε+ + ε−)/2, Yee’s second-order scheme can be obtained similarly
to that in the interior of the domain. Although this only gives a local truncation error of
first-order accuracy, the global second-order convergence rate of the Yee scheme is not
affected, as confirmed numerically [58]. However, higher-order approximation formulas at
interfaces are needed to match the interior fourth-order scheme. This can be done in the
following by employing the technique developed in [53] for the case of a flat interface in
the Cartesian coordinate system.

From the interface conditions (2.32) we can conclude the continuity of the time and
tangential derivatives ofEz, H ξ , andHη (i.e.,∂Ez/∂ξ, ∂H ξ /∂ξ , and∂Hη/∂ξ ) across the
interface atη = 0, so it follows from (2.10) withσ E = 0 that

∂Ez

∂t
= 1

Jε+

(
α
∂Hη

∂ξ
− β ∂H ξ

+
∂η

)
+ 1

Jε+
(P Hξ + QHη)

= 1

Jε−

(
α
∂Hη

∂ξ
− β ∂H ξ

−
∂η

)
+ 1

Jε−
(P Hξ + QHη) (2.33)

at the interface, whereu± means the limiting value ofu(t, ξ, η) asη→ 0± and similarly
for derivatives.

Assume that the electric grid points withj = 0 are located at the interface. Since∂H ξ /∂η

is discontinuous across the interface, then we need to modify its difference approximation
at the grids withj = 0. To simiplify the expressions, define two vectorsH± by

H± =
(
H ξ

i,±1/2, H ξ
i,±3/2, H ξ

i,±5/2

)
.

At the grid points(i, 0) we use the one-sided third-order difference approximations,

∂H ξ
±

∂η
= ± 1

1η

(
a0H ξ

i,0+ a · H±
)
,

where

a0 = −184

60
, a= 1

60
(225,−50, 9).

Substituting these one-sided approximations into (2.33) and eliminatingH ξ
i,0 we obtain that

∂Ez

∂t

∣∣∣∣
i,0

= b+ + b−
Ji,0(b−ε− + b+ε+)

×
[
αi,0

∂Hη

∂ξ

∣∣∣∣
i,0

− βi,0

1η(b+ + b−)
a · (b+H+ − b−H−)+ Qi,0Hη

i,0

]
,

whereb± = a0βi,0±1ηPi,0. At the grid points immediately next to the interface we may
use four-point third-order one-sided approximations:

∂H ξ

∂η

∣∣∣∣
i,±1

= ± 1

241η

[−23H ξ
i,±1/2+ 21H ξ

i,±3/2+ 3H ξ
i,±5/2− H ξ

i,±7/2

]
,

∂Ez

∂η

∣∣∣∣
i,±1/2

= ± 1

241η

[−23Ez
i,0+ 21Ez

i,±1+ 3Ez
i,±2− Ez

i,±3

]
.
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We can employ the same technique as at interior grid points to discretize the temporal and
the other spatial derivatives and to interpolateH η

i,0.
Similarly, at the grid points on and immediately next to a perfectly conducting boundary,

which corresponds toξ = constantor η = constantin the transformed space, we may
apply four-point third-order one-sided approximations to the spatial derivatives in theξ

or η direction. The temporal and the other spatial derivatives may be discretized by using
the same technique as at interior grid points. It should be remarked that similar one-sided
difference approximations have also been used in [58], where five-point fourth-order one-
sided difference approximations are combined with fifth-order one-sided interpolations to
derive fourth-order boundary schemes near boundaries and interfaces.

Numerical experiments in Section 3 showed no instabilities of the fourth-order scheme
with the above treatment of interface and boundary conditions. Furthermore, the overall
fourth-order convergence rate of the fourth-order scheme was not affected by the above
third-order difference schemes at and near the boundaries and interfaces, as confirmed in
the numerical experiments in Section 3, which is consistent with the theoretical results of
Gustafsson [24, 25].

3. NUMERICAL EXPERIMENTS

To illustrate the performance of the fourth-order scheme we consider in this section two
electromagnetic wave problems: the modeling of a cylindrical PEC resonator for which
exact solutions exist, and problems of scattering from periodic surfaces.

All the results were computed using MATLAB. The time-stepδt in the fourth-order
scheme is required to satisfy

δt ≤ 41min

7
√

2c
,

where1min is the minimum grid spacing in thex andy directions andc = maxi, j ci j , with
ci j = (µi j εi j )

−1/2 being the local speed of the wave in the cell(i, j ), following the stability
analysis in [53] on an infinite homogeneous domain.

3.1. Modeling of Cylindrical PEC Resonators

Assume that the resonator consists of two concentric PEC cylinders with an electromag-
netic wave bouncing back and forth between the walls (see Fig. 1). The material is taken
to be in a vacuum, (i.e.,ε = µ = 1 in normalized units). The radii of the two cylinders are
r1 = 1/6 andr2 = 1/2. The exact time-domain solution of the problem is (cf. [1])

Ez = cos(ωt + θ)[ J1(ωr )+ aY1(ωr )],

H x = − 1

2
sin(ωt + θ) sinθ [ J0(ωr )− J2(ωr )+ a(Y0(ωr )− Y2(ωr ))]

− cosθ

ωr
cos(ωt + θ)[ J1(ωr )+ aY1(ωr )],

H y = 1

2
sin(ωt + θ) cosθ [ J0(ωr )− J2(ωr )+ a(Y0(ωr )− Y2(ωr ))]

− sinθ

ωr
cos(ωt + θ)[ J1(ωr )+ aY1(ωr )]
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FIG. 1. The cylindrical PEC resonator.

for r1< r < r2, where(r, θ)denote the usual polar coordinates,Jn andYn stand for thenth or-
der Bessel functions of the first and second kind, respectively, andω= 9.813695999428405
anda = 1.76368380110927, which are obtained from the boundary conditions on the walls
at r = r1 and r = r2, respectively, withEz = 0. In this case, the orthogonal curvilinear
coordinate (ξ, η) can be taken so that

r = r1+ ξ − 1

imax− 1
(r2− r1), θ = 2π

η − 1

jmax− 1
,

whereimax and jmax denote the number of grid points located equally along the radial (ξ )
and angular (η) directions, respectively, with1ξ = 1η = 1. Thus the annulus region in the
physical space is mapped onto the rectangular domain 1< ξ < imax and 1≤ η ≤ jmax in
the transformed space.

Figure 2 shows theL2 error of the electric field component as a function of time, as
computed using the Yee and the fourth-order schemes for different resolutions, whereh
denotes the spatial grid size (=π/156,π/312, andπ/636) and theL2 error is defined by

L2(t) =

√√√√∑imax
i=1

∑ jmax
j=1

(
Ez

exact

∣∣
i, j
− Ez

num

∣∣
i, j

)2

imaxjmax
.

Table I gives theL2-error of the electric field component as computed using the Yee and
fourth-order schemes on orthogonal curvilinear grids as well as the Yee scheme (with a
staircased approximation to the boundary) and the bounded error scheme with simultaneous
approximation terms (SAT) developed in [1] for a Cartesian grid. Note that in Table I the
results for the staircased Yee scheme and SAT were taken from Ref. [1]. From Table I it is
found that the staircase approximation leads to an extremely slow convergence rate at early
time (t = 1) and a divergent scheme at late time (e.g.,t = 10). This is probably not only
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FIG. 2. The L2 error of Ez vs timet as computed by the curvilinear grid Yee (left) and fourth-order (right)
schemes for different resolutions:h = π/156,π/312,π/636.

because staircasing misrepresents the shape of the body, but also because of the fact that in
this resonator case an electromagnetic wave is bouncing back and forth between the walls,
so numerical errors would accumulate quickly in the solution. In contrast, the curvilinear
Yee and fourth-order schemes represent the shape of the body exactly and give an excellent
convergence rate even at late time, with the (4, 4) scheme performing much better than the
Yee scheme (see Fig. 2 and Table I).

3.2. Scattering by Periodic Surfaces

We now consider two-dimensional electromagnetic scattering by a dielectric interface in
the transverse electric (TE) polarization case. The model equations are given by (2.1)–(2.3)

TABLE I

The L2 Error of the Electric Field for Different Schemes under the Cartesian

and Curvilinear Coordinates for Different Resolutions

t = 1 t = 10

Scheme h δt Grid L2 Rate L2 Rate

Cartes. Yee 1/40 2h/3 ≈1000 0.4322 0.5101
coord.a (staircase) 1/80 ≈4000 0.3635 0.28 0.4364 0.23

1/160 ≈16000 0.1742 1.06 0.6683 −0.61
SAT 1/40 h/5 ≈1000 1.203× 10−3 8.435× 10−3

1/80 ≈4000 1.705× 10−4 2.82 8.354× 10−4 3.34
1/160 ≈16000 1.502× 10−5 3.50 8.27× 10−5 3.34

Curv. Yee π/156 h/
√

2 676 8.87× 10−3 8.65× 10−2

coord. π/312 2704 2.24× 10−3 1.99 2.20× 10−2 1.97
π/636 11236 5.51× 10−4 2.02 5.35× 10−3 2.04

(4, 4) π/156 2h/5 676 3.68× 10−4 3.14× 10−3

π/312 2704 3.30× 10−5 3.48 2.67× 10−4 3.56
π/636 11236 2.22× 10−6 3.89 1.63× 10−5 4.03

a Results in the Cartesian coordinate case were taken from Ref. [1].
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FIG. 3. The computational domain of the scattering problem.

in a Cartesian coordinate system(x, y), and a computational domain is shown in Fig. 3.
Periodic boundary conditions are imposed on the two vertical boundaries of the computa-
tional domain to allow the study of long-term behavior, whereupon the interface is assumed
to be a periodic surface.

The problem of electromagnetic wave scattering from periodic surfaces has been exten-
sively investigated (see, e.g., [7, 14, 15, 17, 27, 30, 42, 51] and the references quoted there).
However, almost all of the past work has been in frequency domain using the Floquet theory.
To obtain the time-domain response, one has to Fourier transform the frequency domain
results, which is not efficient for wideband applications.

The FDTD method provides a good alternative for the solution of scattering problems
in the time domain without resorting to frequency-domain analysis. This method has been
successfully applied to scattering problems where the scatterer is of finite size (see, e.g., [43,
44] and the references quoted there). Recently the method was also applied to the problem
of electromagnetic wave scattering by periodic surface [14, 30, 51], where only the second-
order schemes are considered, which suffer from strong numerical dispersion leading to
nonphysical oscillations of the solution.

Here we apply the fourth-order orthogonal curvilinear grid FDTD scheme to scattering
from periodic surfaces. The numerical results show that the fourth-order scheme is not only
numerically stable but also accurate and highly efficient compared with the second-order
scheme.

The computational domain is shown in Fig. 3. A perfect conductor is assumed at the
top boundary, a reflectionless absorbing layer is used at the bottom boundary, and periodic
boundary conditions are used for the side boundaries of the computational domain. Elec-
tromagnetic boundary conditions (continuity of tangential electric and magnetic fields) are
employed along the rough interface.

The size of the computational domain is assumed to be 10 cm by 10 cm or 0.1 m by 0.1 m
(0≤ x ≤ 0.1, −0.01≤ y ≤ 0.09), which is divided equally by a cosine interface with
period and peak-height dimensions of 10 and 0.5 cm, respectively. The bottom medium is
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assumed to be a free space and the top medium is an isotropic and lossless material of relative
permittivity 9 and relative permeability 1, with a perfect conductor at the top (y = 0.9) and
a reflectionless absorbing layer (−0.01< y < 0) at the bottom. The conductivity of the
layer is

σ(y) = σm

( y

δ

)2
, σm=− 3 ln(0.001)

2δ
ε0c,

whereδ = 0.01 m is the thickness of the layer,ε0 is the permittivity of the free space, andc
is the speed of light. The normal incident pulse (alongy direction) is taken to be a Gaussian
of the form [51]

Ez(t, y) = exp

[
−
(

t − y/c

pw

)2 ]
, (3.34)

wherepw = 26 ps.
The problem was solved by three methods: the Yee scheme with a staircased approxima-

tion to the interface, and the Yee ((2, 2)) and fourth-order ((4, 4)) schemes on an orthogonal
curvilinear grid conforming to the interface. The conformal orthogonal curvilinear grid is
generated using the numerical grid generation technique proposed in Appendix B along
with the blending function (B.6) (see Fig. 4b). Since the exact solution for this problem is
unknown, the numerical solution obtained using the staircased Yee scheme on a fine uniform
Cartesian grid with the grid size1x = 1y = 0.0083 cm (1200 grid points in both directions)
is assumed to be the exact solution. This reference solution is compared with the numerical
solution computed using the curvilinear Yee and fourth-order schemes for different resolu-
tions. The Courant numberν is taken to be 0.4 for all three schemes, so the time step is taken
asδt = ν1x/c = 0.11113 ps for the staircased Yee scheme,δt = νmin(1x)/c = 0.78277,
0.39139, and 0.195695 ps for the curvilinear Yee scheme with resolutions 100× 100, 200×
200, and 400× 400, respectively, andδt = νmin(1x)/c = 0.78277 and 0.39139 ps for the
curvilinear fourth-order scheme with resolutions 100× 100 and 200× 200, respectively.

FIG. 4. Orthogonal curvilinear grids conforming to the interface and generated using the blending functions
ω given by (B.5) (a) and (B.6) (b).
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TABLE II

Comparison of CPU Time, Memory, L2 Error, and Convergence Rate for the Staircased Yee

Scheme and the Curvilinear Yee and Fourth-Order Schemes with Different Resolutions

t = 1000 ps
CPU time Memory

Scheme Grid (min) (meg) ‖Error‖2 Rate

(2, 2) 100× 100 1.38 7.16 5.59× 10−2

200× 200 11.4 28.4 1.85× 10−2 1.59
400× 400 95.1 113 3.96× 10−3 2.23

(4, 4) 100× 100 6.28 12.4 7.88× 10−3

200× 200 54.5 49.1 5.59× 10−4 3.82
Staircased 100× 100 0.57 3.12 6.54× 10−2

Yee 200× 200 4.61 12.3 2.37× 10−2 1.46
400× 400 41.9 49.0 5.77× 10−3 2.04
800× 800 317 195 9.10× 10−4

1200× 1200 1063 441

Table II compares the CPU time and memory as well as theL2 error and the convergence
rate for the staircased Yee and the curvilinear Yee and fourth-order schemes for different
resolutions att = 1000 ps. Table II shows the fourth-order and second-order convergence
rates of the curvilinear fourth-order and Yee schemes. It is further found from Table II that
to achieve the same level of numerical error the CPU time and memory requirements of the
curvilinear fourth-order scheme are about 15 and 9 times lower than those of the curvilinear
Yee scheme, respectively, and about 7 and 4 times lower than those of the staircased Yee
scheme, respectively.

For testing the stability of the curvilinear Yee and fourth-order schemes in conjunction
with the reflectionless absorbing layer and the numerical treatment of the boundary and
interface conditions, the computation was further carried out up tot = 10,000 ps (over
12,775 time steps).

FIG. 5. Gaussian pulse normally hitting a sinusoidal interface. Distribution of the electric field att = 1000 ps
alongx = 0 (left) andx = 0.05 m (right) as computed by the curvilinear Yee and (4, 4) schemes for different
resolutions.



A STAGGERED-GRID FDTD METHOD 755

FIG. 6. Gaussian pulse normally hitting a sinusoidal interface. Distribution of the electric field att = 2000 ps
alongx = 0 (left) andx = 0.05 m (right) as computed by the curvilinear Yee and (4, 4) schemes for different
resolutions.

The electric field distribution is recorded att = 1000, 2000, and 10,000 ps and shown
in Figs. 5, 6, and 7. The numerical results computed using the fourth-order scheme with
the resolution 200× 200 are found to be in excellent agreement with the reference solution
even at a very late time (e.g.,t = 10,000 ps). However, the numerical results computed
using the fourth-order scheme with the low-resolution 100× 100 and the Yee scheme
with the high-resolution 400× 400 are found to be in good agreement with each other
at all times up tot = 10,000 ps but have some discrepancies with the reference solu-
tion even at early time (e.g.,t = 2000 ps). No instability was observed in the numerical
computations.

FIG. 7. Gaussian pulse normally hitting a sinusoidal interface. Distribution of the electric field att = 10,000 ps
alongx = 0 (left) andx = 0.05 m (right) as computed by the curvilinear Yee and (4, 4) schemes for different
resolutions.
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4. CONCLUSIONS

The explicit fourth-order accurate staggered FDTD scheme, proposed in [53] for
Maxwell’s equations in a Cartesian grid, has been extended to an orthogonal curvilin-
ear grid which conforms to metallic boundaries and dielectric interfaces so it can be ap-
plied to complex electromagnetic structures. The fourth-order scheme has been extended
to the reflectionless absorbing layer simulating radiation out of a computational domain.
The associated third-order boundary schemes have also been described for two classes of
boundary conditions: the dielectric interface and the perfect conductor. The advantage of
using orthogonal curvilinear grids is that the simple structure of Maxwell’s equations is re-
mained in the transformed equations and the boundary and interface conditions are greatly
simplified.

The method has been applied to scattering from periodic surfaces, and a simple technique
has also been presented for generating orthogonal curvilinear grids that conform to the
material boundaries and interfaces in the scattering problem. Numerical results indicate that
the fourth-order scheme is numerically stable and is efficient in modeling electromagnetic
scattering from periodic surfaces.

The method has also been applied to a problem of modeling a cylindrical PEC resonator
consisting of two concentric PEC cylinders with an electromagnetic wave bouncing back
and forth between the walls. From the results it is clear that the staircase approximation
may not be appropriate in computation of microwave resonators due to the extremely slow
convergence even at a early time of staircased schemes and the new fourth-order scheme
on an orthogonal curvilinear grid can be an effective alternative.

For problems involving nonsmooth or random rough surfaces it is difficult to generate
orthogonal curvilinear grids. Currently work is in progress in extending the algorithm to
deal with these cases. On the other hand, although numerous computational experiments
have shown no instabilities whatsoever, this remains an interesting open question.

APPENDIX A: STABILITY, DISPERSION, AND DISSIPATION

In this appendix we discuss the stability, dispersion, and dissipation of the interior fourth-
order scheme for the one-dimensional case with an infinite homogeneous lossless compu-
tational domain in the Cartesian coordinate system (see [53] for details). In this case, our
fourth-order scheme leads to the characteristic equation forλ of

576λ5(λ− 1)2+ (P Q)2(26λ3− 5λ2+ 4λ− 1)2 = 0, (A.1)

whereP = ν sin(k1x/2) andQ = (6+ sin2(k1x/2))/3, with the Courant (or CFL) num-
berν = cδt/1x andc = (εµ)−1/2, λ is the complex time eigenvalue whose magnitude will
determine the stability and dissipation properties of the difference scheme, andk is the real
wavenumber of the arbitrary harmonic wave component whose stability and decay is deter-
mined by|λ|. The solutions of (A.1) giveλ as a function of the medium parameters, the time
step, and the quantityk1x = 2π/N (with N being the number of points per wavelength).

It was shown in [53] that max|λ| ≤ 1 for arbitrary1x as long asν ≤ 4/7 and, hence,
the fourth-order difference scheme is stable in the one-dimensional homogeneous case as
long asν = cδt/1x ≤ 4/7≈ 0.57. Note that in the two-dimensional homogeneous case
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the stability condition for the fourth-order scheme is [53]:√(
cδt

1x

)2

+
(

cδt

1y

)2

≤ 4

7
. (A.2)

The solutionλ of the characteristic equation (A.1) in the 1-D case determines the disper-
sion and dissipation properties of the fourth-order scheme;|λ| determines the amplitude (or
dissipative) error, while arctan(=λ/<λ) determines the phase (or dispersive) error, where
=λ and<λ are the imaginary and real parts ofλ. The normalized local amplitude and phase
errors are determined from the principal rootλ that is an approximation to exp(iωδt) =
exp(ickδt) using

era = |λ| − 1, (A.3)

erp = 1+ φ

ωδt
= 1+ φ

νk1x
, (A.4)

whereφ= arctan(=λ/<λ). Figure 8 plots the normalized local amplitude (or dissipative)
errors for the (4, 4) and RK schemes as a function of spatial resolutionk1x at a Courant
number of 0.4, where the RK scheme employs the classical fourth-order four-stage Runge–
Kutta time integrator in conjunction with the five-point fourth-order central difference
approximations to the first-order spatial derivatives (see, e.g., [60]); note that the Yee scheme
is dissipationless. From Fig. 8 it is seen that the amplitude error for the RK scheme is smaller
than that for the (4, 4) scheme. For example, when the wave is sampled at eight points per
wavelength the amplitude errors for the RK and the (4, 4) schemes are−0.00065% and

FIG. 8. Amplitude (or dissipative) errors for the (4, 4) and the RK schemes as a function of spatial resolution
k1x at a Courant number of 0.4.
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FIG. 9. Phase (or dispersive) errors for the Yee, (4, 4) and RK schemes as a function of spatial resolution
k1x at a Courant number of 0.4.

−0.00384%, respectively. However, the amplitude errors for both schemes are much smaller
than their respective phase errors, as seen from Fig. 9, where the phase errors are ploted
as a function of the spatial resolution at a Courant number of 0.4 for the Yee, (4, 4) and
RK schemes, and the phase error for the RK scheme is only slightly smaller than that for
the (4, 4) scheme. For example, if the wave is sampled at eight points per wavelength (i.e.,
k1x = π/4), the phase errors for the Yee, (4, 4), and RK schemes are 0.0217, 0.00207, and
0.00179 rad, respectively. Conversely, for Yee’s scheme to achieve a phase error of 0.002
rad the wave needs to be sampled at 26.3 points per wavelength (i.e.,k1x = 0.239).

APPENDIX B: ORTHOGONAL GRID GENERATION

Numerical grid generation is a rapidly developing area in scientific computation [32, 49]
and has become an essential part of computational fluid dynamics, electromagnetics, and the
like. Its use gives to finite-difference and finite-volume methods capabilities for modeling
realistic geometries similar to those of the finite-element method and extends computational
modeling of fluid flow and electromagnetic waves and fields to engineering analysis and
design. In this appendix, we propose a simple technique to generate orthogonal curvilinear
grid for domains containing curved interfaces or boundaries based on the idea that if the
slope of a given curve passing through a point (x0, y0) is g(x0, y0), then the perpendicular
trajectory through this point has slope−1/g(x0, y0) [33].

Orthogonal grid generation has been studied by many authors in two- and three-
dimensional cases, including doubly connected regions (see, e.g., [3, 5, 19, 32, 47–49,
52] and the references quoted there). Our method is much simpler compared with the previ-
ous ones and can be applied to problems involving duct-shaped domains, such as scattering
by rough surfaces, including periodic surfaces (diffraction gratings), wave propagation
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and scattering in multilayered media with curved boundaries and interfaces, duct acoustic
problems, and so on. Note that orthogonal grids have been used recently for numerically
solving a problem in the duct acoustics in [4] as well as electromagnetic wave problems in
multilayered regions with curved boundaries and interfaces in [34, 39].

Consider the computational domain shown in Fig. 3. Suppose the interface is given by
the functiony = yin(x) and the top bottom boundaries are parallel to thex-axis and defined
by y = ytop = constantand y = ybottom= constant, respectively. These three grid lines
correspond to threeξ -lines (i.e.,η = constant) and may be determined first. Letg(x, y)
denote the slop of the grid lines at whichη = const, that is,

g(x, y) = dy

dx

∣∣∣∣
η=const

. (B.1)

Then the slope of the perpendicular trajectory through(x, y) is−1/g(x, y) so that

g(x, y) = −dx

dy

∣∣∣∣
ξ=const

. (B.2)

The above two equations may be solved for grid lines, and there are an infinite number of
choices forg. However, certain conditions must be imposed ong so as to get a conformal
grid to the interface and boundaries. Define the interface and the top and bottom boundaries
by

0in := {(x, y)|y = yin(x)},
0s := {(x, y)|y = ys},

wheres stands fortopor bottom. Then it follows that

g(x, y) = y′in(x), (x, y) ∈ 0in, (B.3)

g(x, y) = 0, (x, y) ∈ 0s. (B.4)

For simplicity, define

g(x, y) = ω(1, δ)1′

where the blending functionω satisfies thatω(1, 0) = 0 andω(1,1) = 1, and

δ(y) = y− ys, 1(x) = yin(x)− ys, 1′ = d1

dx
= y′in(x),

with ys representingytop or ybottom. Clearly,g satisfies the conditions (B.3) and (B.4). The
simplest choice forg is

ω(1, δ) = δ

1
. (B.5)

Figure 4a shows a sample mesh generated using this choice forω. The grid conforms to the
interface and boundaries. However, the size of the grid varies sharply at the interface and
the joint line between curvilinear and linear coordinates, which results in jumping of grid
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derivatives and then extra computational error. This is because the choice (B.5) forω as a
function ofδ has discontinuous derivatives at 0 and1. A better choice forω may be

ω(1, δ) = 1

2

[
1− cos

(
δ

1
π

)]
, (B.6)

which is smooth atδ = 0,1. Figure 4b shows the grid mesh generated with this function,
which is stretched nicely in the whole domain compared with that shown in Fig. 4a and will
lead to better numerical results.

The procedure of the numerical grid generation is as follows:

1. Determine the blending functionω in the whole domain.
2. Locate the grid points (xi , yi ) at the interface,xi = i1x, yi = yin(xi ), where i =

1, 2, . . . , imax, and then solve the ordinary differential equation (B.2) with the starting value
(xi , yi ) and the finishing valueys to get a group of mesh lines.

3. Locate the grid points (xj , yj ) at the left boundary,xj = 0,yj = yin(0)+ ( j − jin)1y,
where j = 1, 2, . . . , jmax andη = jin, corresponding to the interface, and then solve the
ordinary differential equation (B.1) with the starting value (xj , yj ) and the finishing value
xr to get another group of mesh lines, wherexr is the value ofx at the right boundary.

4. Solve for the grid points from the intersections of two sets of mesh lines.

Numerical methods may be used to solve the differential equations in steps 2 and 3. In
generating the grids shown in Fig. 4 the Runge–Kutta method was used in this paper to
solve the differential equations in steps 2 and 3.

APPENDIX C: CALCULATION OF GRID DERIVATIVES

Grid derivatives appear in the transformed Maxwell’s equations so it is important to
calculate accurately the values of these grid derivatives in order to match the accuracy of
the fourth-order scheme. The functiong(x, y) is given everywhere in the domain and can
be used effectively to determine the grid derivatives. To this end, we derive certain relations
betweeng and the grid derivatives. First it follows from (B.1) and (B.2) that

xη = ∂x

∂η
= dx

dy

∣∣∣∣
ξ=const

∂y

∂η
= −g(x, y)yη, (C.1)

yξ = ∂y

∂ξ
= dy

dx

∣∣∣∣
η=const

∂x

∂ξ
= g(x, y)xξ . (C.2)

Next, by a direct calculation it can be obtained that

P = 2(g1+ gg2)x
2
ξ yη, (C.3)

Q = 2(g2− gg1)xξ y2
η, (C.4)

whereg1 = ∂g(x,y)
∂x andg2 = ∂g(x,y)

∂y .
From (C.1)–(C.4) it is seen that the calculation of the grid derivatives that appeared in our

fourth-order scheme (i.e., inα,β, J, P, andQ) reduces to that of the two simplest first-order
grid derivativesxξ and yη, which may be approximated using the five-point fourth-order
centered difference schemes (2.19)–(2.20) (see Section 2.1).
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