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The explicit fourth-order staggered finite-difference time-domain scheme, pre-
viously proposed for a Cartesian grid, is extended to Maxwell’'s equations in an
orthogonal curvilinear coordinate system and applied to electromagnetic wave prob-
lems. A simple technique is also presented for generating orthogonal curvilinear
grids that conform to the material boundaries and interfaces of the problem. Nu-
merical experiments are presented to illustrate the efficiency and accuracy of the
method. @ 2002 Elsevier Science (USA)
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1. INTRODUCTION

The finite-difference time-domain (FDTD) method, which was first introduced b
Yee [55] in 1966 and later developed by Taflove and others [43—-46] and which employ
fully staggered space—time grid, is a very efficient numerical algorithm in computatior
electromagnetics and is applicable to a broad range of problems. However, the traditi
FDTD scheme is based on a Cartesian coordinate system, and it is difficult to exactly ¢
erate grids for electromagnetic structures with curved boundaries and interfaces. The
and straightforward approach is to simply approximate the boundaries and interfaces u
a staircased curve, and an accurate solution can only be obtained using very fine
and, consequently, a very small time step. While this may seem adequate for many p
lems it nevertheless affects the overall accuracy and essentially reduces the (second-c
Yee scheme to first order (see, e.g., [10, 29, 43, 44]). In the case of perfectly conduc
boundaries this problem has been considered by many authors (see, e.g., [10, 29]), ¢
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number of approaches have also been put forward to tackle the problem: nonorthog:
curvilinear FDTD methods [22, 28, 35], contour path methods [27, 31], locally conform
FDTD methods [21, 26, 56], and finite-element or finite-volume methods on unstructul
grids [6, 37, 38, 57]. A variety of other techniques can be found in [43, 44]. Most, if not a
of these methods, however, sacrifice the simplicity of the original Yee scheme to achi
the improved accuracy, and moreover they are difficult to extend to high-order scheme

In the case of dielectric interfaces where the tangential components of the electric f
is nonzero, additional difficulties arise when imposing the interface conditions on curv
interfaces with nonorthogonal curvilinear or unstructured grids, and few results are availa
For the scalar wave equation with a general curvilinear interface a second-order imme
interface method was proposed in [36], in which a simple Cartesian grid is maintained «
the finite-difference stencils around the immersed interfaces are modified to account
the correct position of the interface and the proper physical jump-conditions. The cont
path method was extended in [27] to deal with electromagnetic scattering by random ro
interfaces. In [18], a block pseudospectral method was proposed for Maxwell’s equatit
with discontinuous coefficients, and proper physical jump-conditions at interfaces we
also used to couple blocks via fictitious points or a generalization of characteristic outfl
conditions in the case of a straight-line interface. Extension by a change of variable \
also mentioned in [18] in the case of curvilinear interfaces.

On the other hand, the (second-order) Yee scheme has been widely used with a ¢
deal of success. Itis, however, efficient only for geometries of moderate electrical size.
wave propagation over longer distances, the grid resolution requirements of the Yee sch
can become excessive, leading to impractical CPU and memory requirements. One is
naturally led to the development of higher-order schemes which produce smaller disper:
or phase errors for a given grid resolution [20, 41, 43, 44, 50, 53, 58-60]. Note that higk
order finite-difference schemes have also been developed for the elastic wave equatio
as well as for acoustic applications (see, e.g., [16, 23] and the reference quoted there)

An important issue associated with high-order interior differencing schemes is the
of numerical boundary schemes which must be suitably accurate relative to the inte
scheme [24, 25] and must be stable. This is because high-order difference schemes
have a large spatial stencil which cannot be used near boundaries and material discon
ities. Appropriate numerical boundary schemes can be difficult to obtain, and this repres
a significant obstacle to the use of higher-order methods. Recent progress is reporte
Carpenteret al. [12, 13], Turkel and Yefet [50], and Abarbanet al. [1] in the case of
perfectly conducting boundaries. However, in the case of dielectric interfaces only a f
results are available. For a plane interface which coincides with the electric grid poir
appropriate fourth-order accurate boundary schemes were derived near dielectric interf
in [58] for an explicit fourth-order in space and second-order in time, staggered, FD
scheme by using fourth-order accurate one-sided extrapolation and one-sided differe
approximations. Similar treatment can be found in [59] for compact implicit fourth-orde
in both space and time schemes. In [53], in the case when the electric grid points coin
with the interface, third-order boundary schemes were given near flat dielectric interfa
for an explicit fourth-order in both space and time, staggered, FDTD scheme by mak
use of third-order one-sided difference approximations combined with the immersed
terface technique. The third-order boundary treatment in [53] is numerically stable &
does not affect the overall fourth-order accuracy of the scheme, as confirmed by numel
experiments.
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Compared with previously developed fourth-order schemes, the FDTD scheme propc
in [53] is explicit, fourth-order accurate in both space and time, and employs the fully st
gered, space and time grid, which is more efficient than nonstaggered grids [54]. Numel
experiments indicate that the scheme as well as its associated third-order boundary t
ments is numerically stable and highly efficient (with respect to Yee’s scheme). Anotl
advantage is that the scheme retains much of the original simplicity of Yee’s scheme
is easy to implement in conjunction with the reflectionless absorbing layers developed
for example, [2, 9, 41] in simulating scattering of waves from computational domains. T
disadvantage is that the scheme is based on a rectangular grid similar to the Yee scl
and hence is ineffeicient for complex structures.

In this paper we extend the fourth-order scheme in [53] to an orthogonal curviline
grid which conforms to metallic boundaries and dielectric interfaces so it can be appliec
complex electromagnetic structures. This is done in Section 2, where the associated t
order boundary schemes have also been described for two classes of boundary condi
the dielectric interface and the perfect conductor. The third-order boundary schemes
derived using one-sided difference approximations combined with the immersed interf
technique [36] and do not affect the overall fourth-order convergence rate of the four
order scheme, as confirmed by the numerical experiments in Section 3, which is consis
with the theorectical results of Gustafsson [24, 25]. The fourth-order scheme has also t
extended to the reflectionless absorbing layer simulating radiation out of a computatic
domain. The advantage of using orthogonal curvilinear grids is that the simple structur
Maxwell's equations is remained in the transformed equations and the boundary and ir
face conditions are greatly simplified under orthogonal curvilinear grids (see Section 2
that they are much easier to deal with numerically. Moreover, nonorthogonal grids may |
to numerical difficulties when cells are badly deformed [32]. Our orthogonal grid meth
can be applied to problems involving smooth duct-shaped domains, such as scatterin
rough surfaces, including periodic surfaces (diffraction gratings), and wave propaga
and scattering in multilayered media with smooth curved boundaries and interfaces.

On the other hand, orthogonal grids have limitations in applications due to the difficu
of generating orthogonal grids for problems involving sharp/nonsmooth features anc
boundaries and interfaces with significant variations. So orthogonal grid methods are
directly applicable in these cases but can be useful in combination with multidomain te
niques, which will be investigated in the future.

It should be remarked that orthogonal grid generation has been studied by many aut
in the two-dimensional case (see, e.g., [3, 5, 19, 32, 47, 49] and the references quoted tf
including the case of doubly connected regions [52], and in the three-dimensional case
48, 49]. Recently, orthogonal grids have also been used for numerically solving proble
in duct acoustics in [4] and for electromagnetic wave propagation problems in multilayel
regions with curved boundaries and interfaces in [34, 39].

A numerical example, which models a cylindrical PEC resonator consisting of two cc
centric PEC cylinders with an electromagnetic wave bouncing back and forth between
walls, is presented in Section 3.1 to illustrate the efficiency of the new scheme. The res
indicate that the staircase approximation may not be appropriate in the computatior
microwave resonators due to the fact that in this case an electromagnetic wave is bour
back and forth between the walls, so numerical errors are building up very quickly in t
solution. Instead, conformal orthogonal curvilinear grid schemes are appropriate alte
tives. In Section 3.2 the new scheme is applied to scattering from periodic surfaces,
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numerical results indicate that the fourth-order scheme is numerically stable as well
accurate and efficient in modeling electromagnetic scattering from periodic surfaces.
orthogonal curvilinear grid that conforms to the material boundaries and interfaces in
scattering problem and is used in Section 3.2 was generated by a simple technique prog
in Appendix B.

2. MAXWELLS EQUATIONS AND THE DISCRETIZATION

We restrict our descriptions to two-dimensional cases although extension to 3D is strai
forward. Considering in this paper the transverse electric (TE) polarization case in an
homogeneous, isotropic medium, the model equations in a Cartesian coordinate sy
are

HX 1 [9E?

G (3ay +UMHx), (2.2)
AHY 1 [9E?
—_— == —oMHY ), (2.2)
ot Mmoo\ ox

8EZ:} 8Hy_8HX_UEEZ 7 (2.3)
ot €\ 0X ay

wheree andy are the permittivity and permeability, and" ando £ denote, respectively,
the magnetic and electric losses of the medium.

We introduce the following coordinate transformation which transforms the comp
tational domain in the physical space (i.€, y)-plan) into a rectangular region in the
transformed space (i.€5, n)-plan):

X=X mn, y=YyEn. (2.4)
Then Maxwell’s equations (2.1)—(2.3) are transformed into

oH® 1 0E* M
— =05 % (2.5)
ot Ju an 7

aH" 1 9E* M

o
—_— = —H", 2.6
ot Ju 9& " (2.6)
0E* 1 8H’7 IH? <8H’7 8HE>} 1

— (PH® H ——EZ
I +QH")

a  Je ag an

an
(2.7)

where J = Xgy, — X, ¢ is the JacobianH*® = H*&, + HY&, and H” = H*nx + HYp,
are the contravariant magnetic componests; x? + yZ and g = xZ + yZ are the metrics,
Y = XeXp + YeYy, and

P = Yee Yy — Yen ¥ + Xee Xy — XenXe, (2.8)
Q= YneYn — Yan¥e + Xpe Xy — XppXe. (2.9)
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Here the subscriptsandn refer to the derivatives with respectd@ndn, and by using the
relationship

Xe = Jny, Xy = _Jéy» Ye = —Jnx, Yn = Jé&x,

it follows thatH* = Hx; + H"x, andHY = Hfy; + H"y,.
We assume that the above coordinate transformation is orthogonal (=€0,andJ # 0),
sothate > 0, 8 > 0, andJ does not change sign. Then (2.7) becomes

oE*? 1 [ aH” oH¢ 1 E
o - +
9§ on

— & n o z

= e i(PH +QH)—?E- (2.10)
Thus, inthe orthogonal curvilinear coordinate systém) the transformed equations (2.5),
(2.6), and (2.10) are of a structure similar to the original Maxwell’s equations so that
fully staggered space-time grid, which is more efficient than the nonstaggered one [54
applicable.

Orthogonality is a desirable property, since the metric tensor [32] of the transformati
then has zero off-diagonal elements, which simplifies both the transformed equations
the application of boundary conditions, as seen above and below. A nonorthogonal tr:
formation could be used, but finding a suitable discretization would be more complicat
Moreover, nonorthogonal grids may lead to numerical difficulties when cells are badly
formed [32]. Note that orthogonal curvilinear grids have been studied by many authors (¢
e.g., [3, 5, 19, 32, 47-48, 49, 52] and the references quoted there) and employed to <
duct acoustic problems in [4] as well as problems of electromagnetic wave propagatio
multilayed media with curved boundaries and interfaces in [34, 39].

2.1. Discretization

In [53], an explicit fourth-order accurate staggered FDTD scheme was proposed
Maxwell’s equations in a Cartesian coordinate system, which is fourth-order accurate
both space and time, conditionally stable, and highly efficient (with respect to Yee'’s seco
order accurate scheme) and still retains much of the original simplicity of Yee’s scher
The idea of deriving the fourth-order scheme in [53] was first to apply the Taylor expans
method to the temporal derivative so that a third-order correctional temporal derivative co
be introduced in the discretization and then to reduce the third-order temporal deriva
to the second-order by employing the Maxwell equations. The idea can be extended tc
Maxwell equations (2.5), (2.6), and (2.10) in the orthogonal system). For example,
consider the equation (2.5). From the Taylor expansion it follows that

n

3
oH + 0D, (2.11)

at

n HS|n+l/2_ Hélnfl/Z (8t)2 83H§
a 5t 24 93

whereét is the time-step size andl' denotes the value af att = nét. Using Eq. (2.5)
gives

93HE |" 9% (1 0E* oM "
LA A N AT (2.12)
ot3 0t2 \ Ju n m
92HE |" 1 (9 oM\ (9E?\]|" M2

__ Lt (o o7 + (=) HeEn (2.13)
ot2 Ju \ ot m an m
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To make use of Yee’s fully staggered space—time grid in the fourth-order scheme we
apply the fourth-order approximation t%|":

n

Hé&|n+1/2 H&|n-1/2 St)2 92H¢
| aal _ @Y + O((8t)%). (2.14)

2 8 0t?

HE M =

From (2.13) and (2.14)¢ |" and(32H¢ /3t?)|" can be obtained, which together with (2.12),
(2.11), and (2.5) implies that

— -1
N . B st (61)2 92 om of
1 HE M2 — (1 HEn-v2 _ 22 1 X2 7 L TM g TM
(1+6m) H?| (1—-06wm) H5| I torae T\t

< (o-)] (55)

whereoy = oMst/u anddy = om(1+ 03 /8) 21 + o /24)/2. Let us consider a uni-
form grid with grid sizesA& and An on a rectangular region in the transformed spac
and assume that the grid is indexed(byj). To derive a fourth-order scheme we can ap-
ply the fourth-order centered difference approximation to the first-order spatial derivat
(0E?/dn) and obtain that

n

: (2.15)

~ n+1/2 ~ n-1/2 ot
(L+Gulij+1r2) H§|i,i+1/2 = (L= Gmlij+2) Hs{i.j+1/2 C Awlij2
(6% 02 omlijr2 1, -
: {H 2a 92T 12 \MTeMhie
d — n
x <8tat - UM|i,j+l/2> ] [AU(EZ|LJH/2)], (2.16)

where A, denotes the fourth-order centered difference operator of the first-order spa
derivative along;, defined by

1 1 9 9 1
Ay(Uij) = A_U ﬂui,jd/z - éui,jfl/z + éui,j+1/2 - ﬂui.j+3/2 .

The discretization induces discrete values for all of the transformed variables in the Maxv
equations. For example,

Uﬂj = u(ty, &, nj),

with (&, n;) = (i A&, j An) being the grid points in the transformed domain &nek nét
thetime. The transformation (2.4) also carries the transformed-space grid to a physical-s
grid (x;,j, ¥i,j), wherex j = x(&, nj) andy; j = y(&, nj).
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For (2.6) and (2.10) a similar argument as above can be used to obtain that

. 1/2

(1+6mlit125) Hn|in:l//2,j
) . 12 st (Bt)2 32 omliviz]
= (L= Gmli+a2i) HY| 5+ Qwli+1/2,] [ 24 a2 1

-1
L 9 2.17
X <1+ éU_,\ZA _ > ((Stat _UM||+1/2]> [AE(E ||+1/2|)] ( )
i+1/2,]
(L Gel) BT = A= Gel) EYf + (00? 6% | oeli
o = M el 24 9t2 12
1, /.0 _—
X (l+ éaé‘i,]) <3tﬁ—O’El|J>‘|
X [otl ]Ag(Hn‘rHl/Z) ,Bi.jA (Hs‘n+1/2)
(P| ] H5’n+1/2+ o | {n+1/2)]’ (2.18)

whereoe and o have expressions similar 9, and oy, with © and the supscripM
being replaced witlh andE, respectively, and whet&; denotes the fourth-order centered
difference operator of the first-order spatial derivative alondefined by

1 1 9 9 1
Ag(Uij) = AE Ui—z/2,j — 8Ui—l/2,j + éui+l/2,j — Zlui+3/2’j .
To obtain a fourth-order in both space and time scheme we employ the four-point secc
order backward difference approximation

92un 1

n n-1 n—-2 n-3
WNW(ZU —5u"t A" —u"o)

and the four-point third-order backward difference approximation

87un ~ —(1(1,!” 18un71 + 9un*2 _ unfa)

at 35t
for the second- and first-order temporal derivatives, respectively, which appear in (2.’
(2.16), and (2.17). On the other hand, on a spatially staggered grid the valtizsaoid
H, at integer grid pointsi, j) are not defined directly, and the following fourth-order
interpolations may be used:

1
£ £ £
H ) = TG(_ HYj_g2 +9H 12 + 9Hfj+1/2 - Hfj+3/2)’
1 £
HY) = 1_6(_ H g2 + 9Hi§—1/2,i + 9Hi5+1/2.j - Hii3/2.,j>'

Finally, the discrete values at the grid poifitsj) of the coefficients in (2.18) (i.eq j,
Bi.i» P.j, andQ; ;) involve those of the derivatives afandy with respect t& andn. As
is seen in Appendix B, the calculation of the second-order derivatives is reduced to the
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the two simplest first-order grid derivatives andy,, which may be approximated by the
five-point fourth-order centered difference schemes

1

Xelij = E(Xi—z,j —8Xi—1,j +8Xit1j — Xit2,j)s (2.19)
1

Yoli,j = E()’i,jfz—syi,jfl-i‘gyi,jﬂ—Yi,j+2)o (2.20)

The above explicit fourth-order in both space and time leapfrog FDTD scheme needs
history values of the field unknowns at four time levels. Compared with the Yee sche
the fourth-order scheme requires additional computational memory but does not incre
the workload sharply. In fact, as illustrated in Appendix A and the numerical experimer
in Section 3.2 (see Table Il below), to achieve the same level of numerical error the C
time and memory requirements of the Yee scheme are about 15 times and 9 times hi
than those of the fourth-order scheme, respectively.

Besides, the computational memory required by the fourth-order scheme is simila
the classical fourth-order Runge—Kutta (RK) scheme. Further, Appendix A shows that b
the fourth-order and the RK schemes have similar numerical behavior. From Appendi
it is found that the amplitude error for the RK scheme is smaller than that for the expli
fourth-order ((4, 4)) scheme. However, the amplitude errors for both schemes are m
smaller than their respective phase errors and have little effect on the solution comp:
with the phase errors, and the phase error for the RK scheme is only slightly smaller tl
that for the (4, 4) scheme.

Furthermore, compared with the fourth-order RK scheme our explicit fourth-order sche
requires fewer operations per time step and also avoids the difficulty of imposing app
priate intermediate-stage boundary conditions, which are required by the RK schem
maintain the order of accuracy (see, e.g., [11, 40] and the references quoted there).

2.2. Boundary Conditions

We consider three of the most important boundary conditions: the dielectric interfa
the perfect conductor, and a reflectionless absorbing layer to simulate radiation out
computational domain.

2.2.1. Reflectionless Absorbing Layers

To terminate the unbounded domain of scattering problems, we consider the use of ¢
called reflectionless absorbing layer technique that was introduced in [41]. In this absork
layer the absorbing terms are added, in this paper, to the transformed equations other
the original equations so that this takes the form

£ M M
OHt _ 1 OB" oy e % o (2.21)
at Ju on u T

aH" 1 9z oM oM
- — _LHUJ[_LRE’ (222)
ot Ju & w2
9EZ 1 aH" aHE 1 of +oF oFoF
= — Y B —~ (PH¢ Hmy — & n gz _ & 1R,
ot Je (O‘ 9E Bn>+Je( +QHY = R

(2.23)
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9 19E?
_;f - 35 (2.24)
oR, 19E?

ETER T (2:25)
9R

atz = EZ (2.26)

Hereo” = 0, o0,’ = o inthe layersin thg-direction,o,’ = 0, o’ = o* inthe layersin
theg-direction, andy’ = 0,” = o in the four overlapping corner regions of the absorbing
layers, wherew denotesM and E. In the case when the reflectionless absorbing laye
is needed only in one direction, say, thelirection, choose,” = 0 ando,” = o* with

w = M, E and writeR = R, so the above equations can be simplified as follows:

Hé 1 §EZ M
oH _ 1 9ET o e (2.27)
ot Ju dn %
dH" 1 9EZ oM
LS A ) (2.28)
ot NITRH u?

9EZ 1 ([ aH"  9HE 1 oF

= —B—— |+ —(PH? H") — —E?, 2.29

ot Je ((x & 877>+Je( +QHY € ( )
dR  19E?

= (2.30)
at — J 9

Equations (2.27)—(2.30) are used in the scattering problem by periodic surfaces in ¢
tion 3.2 below. The above two sets of equations can be discretized similarly to that shc
in Section 2.1.

2.2.2. Dielectric Interfaces and Perfect Conductors

We assume the materials involved are nonmagnetic and lossless so that in the TE p
ization case the boundary conditions between different dielectric materials become

EZ=E3 n*H{ —nYH = n*H) —nYHY, n*H +nYHY =n*HY +nYH), (2.31)

where the subscripts refer to the field components in two neighboring medig’and)
denotes the unit vector normal to the interface.

Under the orthogonal transformation (2.4) an interface or a boundary in the physi
space corresponds to&aline wheren is constant and varies or amg-line where¢ is
constant and varies, so the unit normal to the interface or boundaty(d/./c) (nx, ny)
(whenn is constant) oe:(J/v/B) (éx, &) (When§ is constant) [32, pp. 74—76]. Without
loss of generality we assume that the interface in the physical space correspgrd®to
Then the interface conditions (2.31) become

Ef= ES, 77xH1y_77ny =7)xH2y—77yH2X, 77fo+77ny = Tlezx+77yH2y~

Due to the orthogonality of the transformation (2.4) these reduce to the simple conditit
in the transformed space:

E:=FE3 H;=H,;, H/=H) atn=0. (2.32)
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If the permittivity e at the interface is evaluated as the average of those at both sides of
interface, that is¢ = (e, + €_)/2, Yee's second-order scheme can be obtained similarl
to that in the interior of the domain. Although this only gives a local truncation error «
first-order accuracy, the global second-order convergence rate of the Yee scheme is
affected, as confirmed numerically [58]. However, higher-order approximation formulas
interfaces are needed to match the interior fourth-order scheme. This can be done ir
following by employing the technique developed in [53] for the case of a flat interface
the Cartesian coordinate system.

From the interface conditions (2.32) we can conclude the continuity of the time a
tangential derivatives dE?, H%, andH" (i.e.,dE?/0&, dH¢ /0&, anddH"/9¢) across the
interface at) = 0, so it follows from (2.10) withs & = 0 that

0E? _ 1 ( 9H” aH 1
= (a— — —(PH¢ H"
1 ( aH"  9H
= - —(PH*¢ H 2.33
Je_(aaé 8n>+ (PHE + QHY) (2.33)

at the interface, whene+ means the limiting value af(t, &, n) asn — 0% and similarly
for derivatives.

Assume that the electric grid points with= 0 are located at the interface. Siride? /9y
is discontinuous across the interface, then we need to modify its difference approxima
at the grids withj = 0. To simiplify the expressions, define two vectbts by

3 & 3
Hi = (Hi,:l:l/Z’ Hi,:|:3/2’ Hi,:l:5/2)'

At the grid points(i, 0) we use the one-sided third-order difference approximations,

IHL 1 ¢
T E 4 7 (agHS,+a-Hy),
where
184 1
— -~ a= (225 -5009).
%="7y = 5@ )

Substituting these one-sided approximations into (2.33) and eIiminHﬁ@g/e obtain that

LEZ . b, +b_
at o Jobe_ +byey)
- oH" Bi.o B o
X |:a|,0 oE An(b++b_)a (b+H+ t)7H7)‘|’Q|,0Hi‘o s

whereby = agfi 0 = AnPR o. At the grid points immediately next to the interface we may
use four-point third-order one-sided approximations:

gHE 1
o0 | =+ 240y [—23Hfﬂ/2 + 21Hig,;tS/2 + 3Hi§,;tS/2 - Hfﬂ/zL
oE?
= 23EZ 21E* 3E? EZ. .|.
377 i1/ 24A [ ,0 + i,+1 + i,42 |,i3]
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We can employ the same technique as at interior grid points to discretize the temporal
the other spatial derivatives and to interpolBk&.

Similarly, at the grid points on and immediately next to a perfectly conducting bounda
which corresponds t§ = constantor n = constantin the transformed space, we may
apply four-point third-order one-sided approximations to the spatial derivatives in the
or n direction. The temporal and the other spatial derivatives may be discretized by us
the same technique as at interior grid points. It should be remarked that similar one-si
difference approximations have also been used in [58], where five-point fourth-order o
sided difference approximations are combined with fifth-order one-sided interpolation:s
derive fourth-order boundary schemes near boundaries and interfaces.

Numerical experiments in Section 3 showed no instabilities of the fourth-order sche
with the above treatment of interface and boundary conditions. Furthermore, the ove
fourth-order convergence rate of the fourth-order scheme was not affected by the at
third-order difference schemes at and near the boundaries and interfaces, as confirm
the numerical experiments in Section 3, which is consistent with the theoretical result:
Gustafsson [24, 25].

3. NUMERICAL EXPERIMENTS

To illustrate the performance of the fourth-order scheme we consider in this section
electromagnetic wave problems: the modeling of a cylindrical PEC resonator for wh
exact solutions exist, and problems of scattering from periodic surfaces.

All the results were computed using MATLAB. The time-st&pin the fourth-order
scheme is required to satisfy

4'Amin
5 bl
7v/2¢
whereAp, is the minimum grid spacing in theandy directions anat = max ; G;j, with

cj = (uijeij)~Y/? being the local speed of the wave in the ¢&llj), following the stability
analysis in [53] on an infinite homogeneous domain.

st

3.1. Modeling of Cylindrical PEC Resonators
Assume that the resonator consists of two concentric PEC cylinders with an electrorn
netic wave bouncing back and forth between the walls (see Fig. 1). The material is ta
to be in a vacuum, (i.e¢, = u = 1 in normalized units). The radii of the two cylinders are
r, = 1/6 andr, = 1/2. The exact time-domain solution of the problem is (cf. [1])
E? = coswt + 8)[Ji(wr) + aYi(wr)],
1 . .
H* = — > sin(wt + 0) sinf[ Jo(wr) — Ja(wr) + a(Yo(wr) — Ya(wr))]
cosd
- coSwt + 0)[I1(wr) + aYi(wr)],
w
1
HY = > sin(wt + 8) cosH[ Jo(wr) — Jo(wr) + a(Yo(wr) — Yo(wr))]

sing
o coSwt + 0)[J1(wr) + aYy(wr)]
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FIG. 1. The cylindrical PEC resonator.

forry <r <r,, where(r, 9) denote the usual polar coordinatésandy,, stand for theath or-

der Bessel functions of the first and second kind, respectivelypan.813695999428405
anda = 1.76368380110927, which are obtained from the boundary conditions on the we
atr =r; andr =r,, respectively, withE? = 0. In this case, the orthogonal curvilinear
coordinate €, ) can be taken so that

E-1 n—1
r=ri+ m(rZ—rl), 0 _Zﬂjmaxi—l’

whereimax and jmax denote the number of grid points located equally along the raglal (
and angular:«f) directions, respectively, withé = An = 1. Thus the annulus region in the
physical space is mapped onto the rectangular domairé 1< imax and 1< 7 < jmax in
the transformed space.

Figure 2 shows thé , error of the electric field component as a function of time, a:
computed using the Yee and the fourth-order schemes for different resolutions, lwheit
denotes the spatial grid sizef/156,7 /312, andr /636) and the_, error is defined by

i Dkl (= SR =

I'max)max

Lo(t) =

Table | gives the_,-error of the electric field component as computed using the Yee at
fourth-order schemes on orthogonal curvilinear grids as well as the Yee scheme (wif
staircased approximation to the boundary) and the bounded error scheme with simultan
approximation terms (SAT) developed in [1] for a Cartesian grid. Note that in Table I ti
results for the staircased Yee scheme and SAT were taken from Ref. [1]. From Table I
found that the staircase approximation leads to an extremely slow convergence rate at «
time ¢ = 1) and a divergent scheme at late time (e.g- 10). This is probably not only
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FIG. 2. Thel, error of E? vs timet as computed by the curvilinear grid Yee (left) and fourth-order (right)
schemes for different resolutionts:= = /156,7/312,7/636.

because staircasing misrepresents the shape of the body, but also because of the fact
this resonator case an electromagnetic wave is bouncing back and forth between the v
so numerical errors would accumulate quickly in the solution. In contrast, the curviline
Yee and fourth-order schemes represent the shape of the body exactly and give an exc
convergence rate even at late time, with the (4, 4) scheme performing much better thar
Yee scheme (see Fig. 2 and Table ).

3.2. Scattering by Periodic Surfaces

We now consider two-dimensional electromagnetic scattering by a dielectric interface
the transverse electric (TE) polarization case. The model equations are given by (2.1)—

TABLE |

The L, Error of the Electric Field for Different Schemes under the Cartesian
and Curvilinear Coordinates for Different Resolutions

t=1 t=10

Scheme h st Grid L, Rate L, Rate

Cartes. Yee 240 /3 ~1000 0.4322 0.5101

coord? (staircase) 1380 ~4000 0.3635 0.28 0.4364 0.23

1/160 ~16000 0.1742 1.06 0.6683 —0.61

SAT 1/40 h/5 ~1000 1.203x 1073 8.435x 1073
1/80 ~4000 1.705x 104 2,82  8.354x 10™* 3.34
1/160 ~16000 1502« 10°° 3.50 8.27x 10°° 3.34

Curv. Yee /156  h//2 676 8.87x 1073 8.65x 1072
coord. /312 2704 2.24¢ 1073 1.99 2.20x 1072 1.97
/636 11236 55k 104  2.02 5.35x 1078 2.04

4, 4) /156 4/5 676 3.68x 104 3.14x 108
/312 2704 3.30« 10° 3.48 2.67x 107 3.56
/636 11236 22X 10°%  3.89 1.63x 10°° 4.03

2 Results in the Cartesian coordinate case were taken from Ref. [1].
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rough surface

FIG. 3. The computational domain of the scattering problem.

in a Cartesian coordinate systam y), and a computational domain is shown in Fig. 3.
Periodic boundary conditions are imposed on the two vertical boundaries of the compi
tional domain to allow the study of long-term behavior, whereupon the interface is assun
to be a periodic surface.

The problem of electromagnetic wave scattering from periodic surfaces has been ex
sively investigated (see, e.g., [7, 14, 15, 17, 27, 30, 42, 51] and the references quoted th
However, almost all of the past work has been in frequency domain using the Floquet the
To obtain the time-domain response, one has to Fourier transform the frequency don
results, which is not efficient for wideband applications.

The FDTD method provides a good alternative for the solution of scattering probler
in the time domain without resorting to frequency-domain analysis. This method has b
successfully applied to scattering problems where the scatterer is of finite size (see, e.qg.,
44] and the references quoted there). Recently the method was also applied to the prol
of electromagnetic wave scattering by periodic surface [14, 30, 51], where only the secc
order schemes are considered, which suffer from strong numerical dispersion leadin
nonphysical oscillations of the solution.

Here we apply the fourth-order orthogonal curvilinear grid FDTD scheme to scatteri
from periodic surfaces. The numerical results show that the fourth-order scheme is not «
numerically stable but also accurate and highly efficient compared with the second-or
scheme.

The computational domain is shown in Fig. 3. A perfect conductor is assumed at |
top boundary, a reflectionless absorbing layer is used at the bottom boundary, and peri
boundary conditions are used for the side boundaries of the computational domain. E
tromagnetic boundary conditions (continuity of tangential electric and magnetic fields) :
employed along the rough interface.

The size of the computational domain is assumed to be 10 cm by 10 cm or 0.1 m by 0.
(0<x=<0.1, -0.01 <y <0.09), which is divided equally by a cosine interface with
period and peak-height dimensions of 10 and 0.5 cm, respectively. The bottom mediur
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assumedto be afree space and the top medium is an isotropic and lossless material of re
permittivity 9 and relative permeability 1, with a perfect conductor at theyop 0.9) and

a reflectionless absorbing layer@.01 < y < 0) at the bottom. The conductivity of the
layer is

3In(0.00)
——————2¢€C

o(y) = om (X)Z, Om= 25 )

8

wheres = 0.01 m is the thickness of the layeg, is the permittivity of the free space, and
is the speed of light. The normal incident pulse (algrdirection) is taken to be a Gaussian
of the form [51]

2
Ext.y) = exp[— (t — y/c) ] (3.34)

pw

wherepw = 26 ps.

The problem was solved by three methods: the Yee scheme with a staircased approx
tion to the interface, and the Yee ((2, 2)) and fourth-order ((4, 4)) schemes on an orthoge
curvilinear grid conforming to the interface. The conformal orthogonal curvilinear grid
generated using the numerical grid generation technique proposed in Appendix B al
with the blending function (B.6) (see Fig. 4b). Since the exact solution for this problem
unknown, the numerical solution obtained using the staircased Yee scheme on afine uni
Cartesian grid with the grid sizex = Ay = 0.0083 c¢cm (1200 grid points in both directions)
is assumed to be the exact solution. This reference solution is compared with the nume
solution computed using the curvilinear Yee and fourth-order schemes for different res
tions. The Courant numbeiis taken to be 0.4 for all three schemes, so the time step is tak
asét = vAx/c = 0.11113 psforthe staircased Yee scheshes v min(Ax)/c = 0.78277,
0.39139, and 0.195695 ps for the curvilinear Yee scheme with resolutions 100, 200x
200, and 400« 400, respectively, antt = v min(Ax)/c = 0.78277 and 0.39139 ps for the
curvilinear fourth-order scheme with resolutions 20000 and 200« 200, respectively.

(a) (b)

X
0 002 004 006 008 01 012 014 016 018 02 0 002 004 006 008 01 012 014 016 018 02

-0.05

0.05

FIG. 4. Orthogonal curvilinear grids conforming to the interface and generated using the blending functic
o given by (B.5) (a) and (B.6) (b).
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TABLE Il
Comparison of CPU Time, Memory, L, Error, and Convergence Rate for the Staircased Yee
Scheme and the Curvilinear Yee and Fourth-Order Schemes with Different Resolutions

t = 1000 ps
CPU time Memory

Scheme Grid (min) (meg) ||Error ||, Rate
2,2 100x 100 1.38 7.16 5.5% 102

200 x 200 11.4 28.4 1.8% 102 1.59

400 x 400 95.1 113 3.96¢ 1078 2.23
4,4) 100x 100 6.28 12.4 7.8& 1073

200 x 200 54.5 49.1 5.5% 10 3.82
Staircased 10& 100 0.57 3.12 6.54& 1072
Yee 200x 200 4.61 12.3 2.3% 102 1.46

400 x 400 41.9 49.0 5.7% 1073 2.04

800 x 800 317 195 9.1 10*

1200x 1200 1063 441

Table Il compares the CPU time and memory as well as therror and the convergence
rate for the staircased Yee and the curvilinear Yee and fourth-order schemes for diffel
resolutions at = 1000 ps. Table Il shows the fourth-order and second-order converger
rates of the curvilinear fourth-order and Yee schemes. It is further found from Table Il tF
to achieve the same level of numerical error the CPU time and memory requirements of
curvilinear fourth-order scheme are about 15 and 9 times lower than those of the curvilin
Yee scheme, respectively, and about 7 and 4 times lower than those of the staircasec
scheme, respectively.

For testing the stability of the curvilinear Yee and fourth-order schemes in conjuncti
with the reflectionless absorbing layer and the numerical treatment of the boundary
interface conditions, the computation was further carried out up=t010,000 ps (over
12,775 time steps).

04 T T T T T 0.05 T T T T T

o02F

005

o & -0.15F
-04)
_02b
_os}
0250
A (2.2),[200x201 W - A (2,2),(200x200)
< (22),(400x400) H seer(22)(400%400)
081 0 (4,4),(100x100) 1 ok A 0 (44),(100x100)
= = {4,4),(200%20f { = = (4,4),{200x200)
— Relerernce 4 — Reference
1=1000p5, x=0 1=100ps, x=0.05m
-1 T L L L L -0 L L L L T
Jom 0 0.02 0.04 0.06 008 0.1 002 [} 0.02 0.04 006 0.08 01

¥{m) ¥ {m)

FIG.5. Gaussian pulse normally hitting a sinusoidal interface. Distribution of the electric field 4000 ps
alongx = 0 (left) andx = 0.05 m (right) as computed by the curvilinear Yee and (4, 4) schemes for differer
resolutions.
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0.2 T

A (22),/200x200)
+eee (2.2),{400x400)
05H O (44},(100x100)
= - (44),(200:200)
—— Referance

B 2.2),200200)
oo [22),{400%400)
O {44],{100x100)
0I8R —~ (4.4).1200x200)
— Reference

1=2000ps, x=D

02 . . . . . )
-002 0 0.02 0.04 006 0.08 (] -002 0 002 0.04 0.06 008 01
¥im) y(m)

FIG.6. Gaussian pulse normally hitting a sinusoidal interface. Distribution of the electric field 2000 ps
alongx = 0 (left) andx = 0.05 m (right) as computed by the curvilinear Yee and (4, 4) schemes for differer
resolutions.

The electric field distribution is recorded ta= 1000, 2000, and 10,000 ps and shown
in Figs. 5, 6, and 7. The numerical results computed using the fourth-order scheme \
the resolution 206 200 are found to be in excellent agreement with the reference soluti
even at a very late time (e.d.= 10,000 ps). However, the numerical results compute
using the fourth-order scheme with the low-resolution ¥0000 and the Yee scheme
with the high-resolution 40& 400 are found to be in good agreement with each othe
at all times up tot = 10,000 ps but have some discrepancies with the reference so
tion even at early time (e.gt,= 2000 ps). No instability was observed in the numerica
computations.

0.08 0.15 T T T T T
A (2,2),(200x20
>+ (2,2),(400x400) [
0.08 O (4,4),(100x100 ~
- {4 (200x20( .
— Reference 90
0.04 0.1 1210000ps, X=0.05m B
002
0 005
&-002 o
-004 0
-006
0081 A (2,2),(200x20! 1 -005
s (2,2),{400x400]
O (44){100x100
0.1 ( - ~ (4,4),{200x20
— Relerence 4
1=10000ps, x=0 [}
012 " " " . 01 n ) . 2 n
=002 0 0.02 0.04 008 008 6.1 ~6.02 0 0.02 0.04 0.06 008 01
¥(m) ¥{m)

FIG.7. Gaussian pulse normally hitting a sinusoidal interface. Distribution of the electric field Hd,000 ps
alongx = 0 (left) andx = 0.05 m (right) as computed by the curvilinear Yee and (4, 4) schemes for differer
resolutions.
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4. CONCLUSIONS

The explicit fourth-order accurate staggered FDTD scheme, proposed in [53] |
Maxwell's equations in a Cartesian grid, has been extended to an orthogonal curvi
ear grid which conforms to metallic boundaries and dielectric interfaces so it can be |
plied to complex electromagnetic structures. The fourth-order scheme has been extel
to the reflectionless absorbing layer simulating radiation out of a computational domz
The associated third-order boundary schemes have also been described for two class
boundary conditions: the dielectric interface and the perfect conductor. The advantag
using orthogonal curvilinear grids is that the simple structure of Maxwell's equations is |
mained in the transformed equations and the boundary and interface conditions are gr
simplified.

The method has been applied to scattering from periodic surfaces, and a simple techn
has also been presented for generating orthogonal curvilinear grids that conform to
material boundaries and interfaces in the scattering problem. Numerical results indicate
the fourth-order scheme is numerically stable and is efficient in modeling electromagns
scattering from periodic surfaces.

The method has also been applied to a problem of modeling a cylindrical PEC reson:
consisting of two concentric PEC cylinders with an electromagnetic wave bouncing be
and forth between the walls. From the results it is clear that the staircase approxima
may not be appropriate in computation of microwave resonators due to the extremely s
convergence even at a early time of staircased schemes and the new fourth-order scl
on an orthogonal curvilinear grid can be an effective alternative.

For problems involving nonsmooth or random rough surfaces it is difficult to genere
orthogonal curvilinear grids. Currently work is in progress in extending the algorithm
deal with these cases. On the other hand, although numerous computational experin
have shown no instabilities whatsoever, this remains an interesting open question.

APPENDIX A: STABILITY, DISPERSION, AND DISSIPATION

In this appendix we discuss the stability, dispersion, and dissipation of the interior four
order scheme for the one-dimensional case with an infinite homogeneous lossless cor
tational domain in the Cartesian coordinate system (see [53] for details). In this case,
fourth-order scheme leads to the characteristic equatioh ébr

57650 — 1)2 + (PQ)?(26:3 — 502 + 41 — 1)2 =0, (A.1)

whereP = vsin(kAx/2) andQ = (6 + sir®(kAx,/2))/3, with the Courant (or CFL) num-
berv = cst/Ax andc = (eu) /2, A is the complex time eigenvalue whose magnitude will
determine the stability and dissipation properties of the difference schemlejstie: real
wavenumber of the arbitrary harmonic wave component whose stability and decay is de
mined by|A|. The solutions of (A.1) givé as a function of the medium parameters, the time
step, and the quantityaAx = 2z /N (with N being the number of points per wavelength).
It was shown in [53] that mgx| < 1 for arbitraryAx as long a3 < 4/7 and, hence,
the fourth-order difference scheme is stable in the one-dimensional homogeneous ca
long asv = cét/AX < 4/7 ~ 0.57. Note that in the two-dimensional homogeneous cas
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the stability condition for the fourth-order scheme is [53]:

2 2
J& () <
AX Ay 7
The solution. of the characteristic equation (A.1) in the 1-D case determines the disp
sion and dissipation properties of the fourth-order scheéimeletermines the amplitude (or
dissipative) error, while arctati{ /NA) determines the phase (or dispersive) error, wher
JIA andNa are the imaginary and real partsiofThe normalized local amplitude and phase

errors are determined from the principal réothat is an approximation to exp{st) =
exp(ckst) using

erg = Al —1, (A.3)

¢ o)
er,=1+—=1 A.4
P + wdt + vkAX’ (A-4)

where¢ = arctan{3A/NA). Figure 8 plots the normalized local amplitude (or dissipative
errors for the (4, 4) and RK schemes as a function of spatial resolkitionat a Courant

number of 0.4, where the RK scheme employs the classical fourth-order four-stage Rur
Kutta time integrator in conjunction with the five-point fourth-order central differenc
approximations to the first-order spatial derivatives (see, e.g., [60]); note that the Yee sch
is dissipationless. From Fig. 8 itis seen that the amplitude error for the RK scheme is sme
than that for the (4, 4) scheme. For example, when the wave is sampled at eight points
wavelength the amplitude errors for the RK and the (4, 4) schemes@B®065% and

x 10

1k

]
n
T

Amplitude error
&
T

4}

-5

~—= {4,4) scheme
— - RKscheme
CFL=0.4

o] 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2

FIG. 8. Amplitude (or dissipative) errors for the (4, 4) and the RK schemes as a function of spatial resolut
kAx at a Courant number of 0.4.
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FIG. 9. Phase (or dispersive) errors for the Yee, (4, 4) and RK schemes as a function of spatial resolu
kAXx at a Courant number of 0.4.

—0.00384%, respectively. However, the amplitude errors for both schemes are much sm:
than their respective phase errors, as seen from Fig. 9, where the phase errors are
as a function of the spatial resolution at a Courant number of 0.4 for the Yee, (4, 4) ¢
RK schemes, and the phase error for the RK scheme is only slightly smaller than that
the (4, 4) scheme. For example, if the wave is sampled at eight points per wavelength (
kAx = /4), the phase errors for the Yee, (4, 4), and RK schemes are 0.0217, 0.00207,
0.00179 rad, respectively. Conversely, for Yee's scheme to achieve a phase error of O
rad the wave needs to be sampled at 26.3 points per wavelength4ire= 0.239).

APPENDIX B: ORTHOGONAL GRID GENERATION

Numerical grid generation is a rapidly developing area in scientific computation [32, 4
and has become an essential part of computational fluid dynamics, electromagnetics, an
like. Its use gives to finite-difference and finite-volume methods capabilities for modelil
realistic geometries similar to those of the finite-element method and extends computati
modeling of fluid flow and electromagnetic waves and fields to engineering analysis ¢
design. In this appendix, we propose a simple technique to generate orthogonal curvilir
grid for domains containing curved interfaces or boundaries based on the idea that if
slope of a given curve passing through a poxat §o) is g(Xo, Yo), then the perpendicular
trajectory through this point has slopel/g(xo, Yo) [33].

Orthogonal grid generation has been studied by many authors in two- and thr
dimensional cases, including doubly connected regions (see, e.g., [3, 5, 19, 32, 47-
52] and the references quoted there). Our method is much simpler compared with the pi
ous ones and can be applied to problems involving duct-shaped domains, such as scatt
by rough surfaces, including periodic surfaces (diffraction gratings), wave propagat
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and scattering in multilayered media with curved boundaries and interfaces, duct acot
problems, and so on. Note that orthogonal grids have been used recently for numeric
solving a problem in the duct acoustics in [4] as well as electromagnetic wave problem
multilayered regions with curved boundaries and interfaces in [34, 39].

Consider the computational domain shown in Fig. 3. Suppose the interface is giver
the functiony = y;,(x) and the top bottom boundaries are parallel tottexis and defined
by Y = Yiop = constantand y = Ypoitom = constant respectively. These three grid lines
correspond to threg-lines (i.e.,n = constanf and may be determined first. Lgtx, y)
denote the slop of the grid lines at whigh= const that is,

dy
gx,y) = — (B.1)
dX n=const
Then the slope of the perpendicular trajectory throggty) is —1/g(x, y) so that
dx
gx,y) = —— : (B.2)
dy g=const

The above two equations may be solved for grid lines, and there are an infinite numbe
choices forg. However, certain conditions must be imposedyso as to get a conformal
grid to the interface and boundaries. Define the interface and the top and bottom bound

by
Cin == {(X, Y1y = yin(X)},
Ls = {(X, Y|y = ¥s},

wheres stands fotop or bottom Then it follows that

g(X, Y) = yi/n(x)v (X» Y) € Fin: (BS)
g(Xv y) = 0’ (Xv y) € l_‘S' (B4)

For simplicity, define
gx, y) = o(A, A

where the blending functiom satisfies thai (A, 0) = 0 andw (A, A) = 1, and

,da o
B(y) = y - ySa A(X) = Ym(x) - y87 A = a = yin(X)a
with ys representingiop Or Yuottom Clearly, g satisfies the conditions (B.3) and (B.4). The
simplest choice fog is

1)
A, 8) = —. B.5
(A, 8) = (8.5)
Figure 4a shows a sample mesh generated using this choioeTbe grid conforms to the
interface and boundaries. However, the size of the grid varies sharply at the interface
the joint line between curvilinear and linear coordinates, which results in jumping of g
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derivatives and then extra computational error. This is because the choice (Bbadax
function of$ has discontinuous derivatives at 0 aindA better choice forw may be

w(A,8) = % {1— cos(in)} , (B.6)

which is smooth a8 = 0, A. Figure 4b shows the grid mesh generated with this functior
which is stretched nicely in the whole domain compared with that shown in Fig. 4a and v
lead to better numerical results.

The procedure of the numerical grid generation is as follows:

1. Determine the blending functiamin the whole domain.

2. Locate the grid pointsx(, y;) at the interfacex; =i AX, ¥i = Vyin(Xi), wherei =
1,2,...,imax andthen solve the ordinary differential equation (B.2) with the starting valu
(X, yi) and the finishing valugs to get a group of mesh lines.

3. Locate the grid pointx(, y;) atthe leftboundary; = 0,y; = yin(0) + (j — jin) Ay,
wherej =1,2,..., jmax @andn = jin, corresponding to the interface, and then solve the
ordinary differential equation (B.1) with the starting valug,(y;) and the finishing value
X to get another group of mesh lines, whards the value ok at the right boundary.

4. Solve for the grid points from the intersections of two sets of mesh lines.

Numerical methods may be used to solve the differential equations in steps 2 and <
generating the grids shown in Fig. 4 the Runge—Kutta method was used in this pape
solve the differential equations in steps 2 and 3.

APPENDIX C: CALCULATION OF GRID DERIVATIVES

Grid derivatives appear in the transformed Maxwell's equations so it is important
calculate accurately the values of these grid derivatives in order to match the accurac
the fourth-order scheme. The functigx, y) is given everywhere in the domain and can
be used effectively to determine the grid derivatives. To this end, we derive certain relati
betweerg and the grid derivatives. First it follows from (B.1) and (B.2) that

ax  dx ay
Xp = — = —— — =—0(X, )Yy, (C.1)
" oom dY|e_constdN !
ay dy X
=227 — =g(X, Y)Xe. C.2
Vs 9E = dx|, _cond® g(Xx, Y)Xe (C.2)

Next, by a direct calculation it can be obtained that

P = 2(g1 + 9g)x2Y;, (C3)
Q = 202 — ggy)Xe Y2, (C.4)

wheregy = 290%) andg, = 2950

From (C.1)—(C.4) itis seen that the calculation of the grid derivatives that appeared in
fourth-order scheme (i.e., in 8, J, P, andQ) reduces to that of the two simplest first-order
grid derivativesx; andy,, which may be approximated using the five-point fourth-orde
centered difference schemes (2.19)—(2.20) (see Section 2.1).
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